DeepRan: Attention-based BiLSTM and CRF for Ransomware Early Detection and Classification
Published in Information Systems Frontiers - Springer Journal, 1-17, 2020
Ransomware is a self-propagating malware encrypting file systems of the compromised computers to extort victims for financial gains. Hundreds of schools, hospitals, and local government municipalities have been disrupted by ransomware that already caused 12.1 days of system downtime on average (Siegel 2019). This study aims at developing a deep learning-based detector DeepRan for ransomware early detection and classification to prevent network-wide data encryption. DeepRan applies an attention-based bi-directional Long Short Term Memory (BiLSTM) with a fully connected (FC) layer to model normalcy of hosts in an operational enterprise system and detects abnormal activity from a large volume of ambient host logging data collected from bare metal servers.